Logical quality |
---|
1 | 2 |
---|---|
1 | 0 |
0 | 1 |
T | F |
A | ¬A |
¬B | B |
Truth values |
||
---|---|---|
1 |
± |
0 |
True,verum: Verification. |
Unspecified,uninterpreted: Indefinite. |
False,falsum: Falsification. |
Truth value(value, valor): |
||
$(G)=1. |
(0 <$(G)<1). |
$(G)=0. |
Truth value assignment(valuation): |
||
V!(G) :=1. |
¬V!(G) ![]() |
V!(G) :=0. |
Truth value determination(evaluation), through a finite proof: |
||
![]() ![]() |
(¬![]() ![]() ![]() ![]() ![]() |
![]() ![]() |
Interpretation(denotation, assignment): |
||
![]() M![m]![]() |
(¬![]() M![m]![]() ![]() ![]() M![n]![]() |
![]() M![m]![]() |
Table bivalid value combinations |
||||||||
---|---|---|---|---|---|---|---|---|
No. | Value pattern |
Logical relation in PPL |
Logical power | |||||
1 | 1 | 1 | 1 | 1 |
T |
¬F |
X![]() X |
0 |
2 | 0 | 0 | 0 | 0 |
F |
¬T |
X![]() X |
1 |
3 | 1 | 1 | 0 | 0 |
A |
¬¬A |
0.50 | |
4 | 1 | 0 | 1 | 0 |
B |
¬¬B |
0.50 | |
5 | 0 | 0 | 1 | 1 |
¬A |
¬A |
0.50 | |
6 | 0 | 1 | 0 | 1 |
¬B |
¬B |
0.50 | |
7 | 1 | 0 | 0 | 0 |
A![]() B |
¬(¬A![]() B) |
0.75 | |
8 | 0 | 1 | 0 | 0 |
A![]() B |
¬(¬A![]() B) |
0.75 | |
9 | 0 | 0 | 1 | 0 |
¬A![]() B |
¬(A![]() B) |
0.75 | |
10 | 0 | 0 | 0 | 1 |
¬A![]() B |
¬(A![]() B) |
A\B |
0.75 |
11 | 1 | 1 | 1 | 0 |
A![]() B |
¬(¬A![]() B) |
0.25 | |
12 | 1 | 1 | 0 | 1 |
A![]() B |
¬(¬A![]() B) |
A![]() B |
0.25 |
13 | 1 | 0 | 1 | 1 |
¬A![]() B |
¬(A![]() B) |
A![]() B |
0.25 |
14 | 0 | 1 | 1 | 1 |
¬A![]() B |
¬(A![]() B) |
A|B |
0.25 |
15 | 1 | 0 | 0 | 1 |
A![]() B |
¬(A#B) |
0.50 | |
16 | 0 | 1 | 1 | 0 |
A#B |
¬(A![]() B) |
0.50 | |
{Courtesy: Benjamin Peirce (1809-1880), Friedrich Wilheml Karl Ernst Schröder (1841-1902), e.a..} |
||||||||
{Zie: Bewijsmethode voor Propositielogica: de Waarheidswaarden- tabelmethode
.} |
Table bivalid value combinations |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | Value pattern |
Logical relation in PPL |
Logical relation in PDL |
Logical relation in Skolem L. |
Logical power | ||||||
1 | 1 | 1 | 1 | 1 |
T |
¬F |
X![]() X |
0 | |||
2 | 0 | 0 | 0 | 0 |
F |
¬T |
X![]() X |
1 | |||
3 | 1 | 1 | 0 | 0 |
A1 |
¬¬A1 |
0.50 | ||||
4 | 1 | 0 | 1 | 0 |
A2 |
¬¬A2 |
0.50 | ||||
5 | 0 | 0 | 1 | 1 |
¬A1 |
¬A1 |
0.50 | ||||
6 | 0 | 1 | 0 | 1 |
¬A2 |
¬A2 |
0.50 | ||||
7 | 1 | 0 | 0 | 0 |
A1![]() A2 |
¬(¬A1![]() A2) |
![]() A[x] |
¬![]() A[x] |
A[x] |
0.75 | |
8 | 0 | 1 | 0 | 0 |
A1![]() A2 |
¬(¬A1![]() A2) |
0.75 | ||||
9 | 0 | 0 | 1 | 0 |
¬A1![]() A2 |
¬(A1![]() A2) |
0.75 | ||||
10 | 0 | 0 | 0 | 1 |
¬A1![]() A2 |
¬(A1![]() A2) |
A1\A2 |
¬![]() A[x] |
![]() A[x] |
¬A[x] |
0.75 |
11 | 1 | 1 | 1 | 0 |
A1![]() A2 |
¬(¬A1![]() A2) |
![]() A[x] |
¬![]() A[x] |
A[cs] |
0.25 | |
12 | 1 | 1 | 0 | 1 |
A1![]() A2 |
¬(¬A1![]() A2) |
A1![]() A2 |
0.25 | |||
13 | 1 | 0 | 1 | 1 |
¬A1![]() A2 |
¬(A1![]() A2) |
A1![]() A2 |
0.25 | |||
14 | 0 | 1 | 1 | 1 |
¬A1![]() A2 |
¬(A1![]() A2) |
A1|A2 |
¬![]() A[x] |
![]() A[x] |
¬A[cs] |
0.25 |
15 | 1 | 0 | 0 | 1 |
A1![]() A2 |
¬(A1#A2) |
(A1![]() A2)![]() A1![]() A2) |
0.50 | |||
16 | 0 | 1 | 1 | 0 |
A1#A2 |
¬(A1![]() A2) |
(A1![]() A2)![]() A1![]() A2) | 0.50 |
Diagram Validity / Satisfiability / Contingentie |
||
---|---|---|
1 |
± |
0 |
Not necessarily untrue:Satisfiable,'Logically possible'. (Is not yet equivalent to 'possibly true').
SATBL(G);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() >$0) )k };![]() ![]() ![]() ![]() ![]() M![m]![]() ![]() ![]() ![]() ![]() |
Impossibly true:Unsatisfiable,Logically excluded. 'Excluded grounds'.
¬SATBL(G);
![]() ![]() ![]() ![]() ![]() $0) )k };![]() ![]() ![]() ![]() ![]() ![]() ![]() M![m]![]() ![]() ![]() ![]() ![]() |
|
Consistency,Widerspruchsfreiheit. Set K* is consistent: From K* no contradiction is derivable.
CONSIS(K*);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Inconsistency,Inconsistent-invalidity. Set K* is inconsistent. From K* a contradiction can be derived.
INCNS(K*);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Consistency theorem,Fundamental theorem (Model-existence theorem): 'Consistency implies Satisfiability'. ![]() ![]()
{CONSIS(K*)
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
Necessarily / always true:Valid,Tautology, Valid-satisfiability.
TAUT(G);
![]() ![]() ![]() ![]() ![]() $1) )k };![]() ![]() ![]() ![]() ![]() ![]() ![]() M![m]![]() ![]() ![]() ![]() ![]() |
Neither true nor false:Definite-Contingency,Contingent-invalidity (invalid but consistent), Contingent-satisfiability (invalid but satisfyable), Insufficiently grounded.
D-CONTIN(G);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() <c[k]<$1) )k };![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() M![m]![]() ![]() ![]() M! [n]![]() |
|
Not necessarily-true:Invalid,non sequitur [nonseq]:
NONSEQ(G);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() <$1) )k };![]() ![]() ![]() ![]() ![]() ![]() ![]() M![m]![]() |
||
Correctness(Soundness in-formele-zin): 'Derivable implies logical consequence'. Set K* is correct. ![]() (Derivable ![]()
CORRECT(K*);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
Completeness(Vollständigkeit). 'Validity implies Derivability'. Set K* is complete: ![]() (Logical consequence ![]()
COMPLET(K*);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
||
Maximal consistency:Set K* is maximally consistent: ![]() (Logical consequence ![]()
MAXCONS(K*);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Implications: ![]() ![]() ![]() ||(¬F[j]![]() |
|
|
(·) Completeness of PPL: proof by Emil L. Post (1920, Introduction to a general theory of elementary propositions). (·) Completeness of PDL-I: proof by Kurt F. Gödel (1929/1930, Über die Vollständigkeit des Logikkalküls). |
(·) Incompleteness of elementary arithmetic (first-order theory of natural numbers according to the logicistic
research program, that was based on classic logic in the Organon of Aristotelis, and had been further developed in
the Grundgesetze der Arithmetik of F.L. Gottlob Frege (1893, 1903) and the Principia Mathematica of Bertrand Russell and Alfred North Whitehead,
parts I-III (1910, 1912, 1913): proved by Kurt Gödel (1931, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme 1). |
Diagram Decidability and Recursivity |
|||
---|---|---|---|
1 |
± |
||
Decidable:The question whether an expression G has a definite (truth) value, can always be answered: ![]() |
UnDecidable:The question whether an expression G has a definite (truth) value, can not always be answered: ![]() |
||
G is Truth-value Decidable:
DECIDBL(G);
![]() ![]() ![]() $1) )||(![]() ![]() $0) ) };![]() ![]() ![]() ||(![]() ![]() Implications: ![]() ![]() ![]() ||(![]() ![]() ![]() ![]() ||¬G ) ) };![]() ![]() ||¬G ) };![]() ||¬G } (always logical value).![]() $1 (truth). |
G is Not truth-value deDecidable:
¬DECIDBL(G);
![]() ![]() ![]() $1) )![]() ![]() ![]() $0) ) };![]() ![]() ![]() ![]() ![]() ![]() Implications: ![]() ![]() ![]() ||(![]() ![]() ![]() ![]() ||¬G ) ) };![]() ![]() ||¬G ) };![]() ![]() $0 (no truth). |
||
G is Validity Decidable:![]() ![]() ![]() ||(![]() ![]() Implications: ![]() ![]() ![]() ||( ¬![]() ![]() ![]() ||( ¬![]() ![]() ||¬SATBL(G) } (always validity value).![]() $1 (truth).G is determinate. |
G is Not validity Decidable:![]() ![]() ![]() ![]() ![]() ![]() Implications: ![]() ![]() ![]() ||( ¬![]() ![]() ![]() ![]() ![]() ![]() ![]() $0 (no truth).G is indeterminate. |
||
Recursive:For all input, the system will be 'halting' (terminating in finite time). |
Non-recursive:For some input the system will be infinitely 'looping'. |
||
RC(G);
![]() ![]() ![]() ![]() ![]() ||(![]() ![]() Implications: ![]() ![]() ![]() ||(¬![]() |
¬RC(G);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Implications: ![]() ![]() ![]() ||(¬![]() |
||
Recursively |
Co-recursively |
|
|
Set K* is Recursively enumerable: If K* has a result, then that will always be provable.
RE(K*);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Complement of K* is Recursively enumerable: If K* has no result, then that will always be provable.
CO-RE(K*);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Set K* is not Recursively enumerable: If K* has a result, then that will not always be provable.
¬RE(K*);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Complement of K* is not Recursively enumerable: If K* has no result, then that will not always be provable.
¬CO-RE(K*);
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Set K* is Recursively enumerable (through Turing Machine procedure): If K* has a result, then that will always be computable.
RE(K*)TM;
![]() ![]() ![]() ![]() ![]() ![]() (TM[h](Ks*[k]) ![]() ![]() ![]() ![]() (TM[h](Ks*[k]) ![]() |
Complement of K* is Recursively enumerable (through Turing Machine procedure): If K* has no result, then that will always be computable.
CO-RE(K*)TM;
![]() ![]() ![]() ![]() ![]() ![]() ¬(TM[h](Ks*[k]) ![]() ![]() ![]() ![]() ¬(TM[h](Ks*[k]) ![]() |
Set K* is not Recursively enumerable (through Turing Machine procedure): If K* has a result, then that will not always be computable.
¬RE(K*)TM;
![]() ![]() ![]() ![]() ![]() ![]() (TM[h](Ks*[k]) ![]() ![]() ![]() ![]() (TM[h](Ks*[k]) ![]() |
Complement of K* is not Recursively enumerable (through Turing Machine procedure): If K* has no result, then that will not always be computable.
¬CO-RE(K*)TM;
![]() ![]() ![]() ![]() ![]() ![]() ¬(TM[h](Ks*[k]) ![]() ![]() ![]() ![]() ¬(TM[h](Ks*[k]) ![]() |
(·) 'Effective procedure' (Hilbert, 1900, 1928). (·) 'Recursive function' (Gödel, 1930, 1931). (·) 'Lambda definable function' (Church, 1935, 1936). (·) 'Turing Machine computable function' (Turing, 1936, 1937). |
(·) UnDecidability/ non-recursivity of elementary calculus of natural numbers (elementary number theory): proof by Alonzo Church, (1935/1936, An Unsolvable Problem of Elementary Number Theory). (·) UnDecidability/ non-recursivity of entire elementary arithmetic (first order arithmetic): proof by Alan M. Turing (1936/1937, On computable numbers, with an application to the Entscheidungsproblem). |
Author | Year | Formalism | Domain | Criterion | |
---|---|---|---|---|---|
Hilbert | 1900,1928 | Effective procedure (hypothetical) | Mathematics, Logic |
Decidability; Entscheidbarheit; Entscheidungs-definitheit; |
|
Post | 1920 |
Truth table method |
PPL |
Completeness; Vollständigkeit. |
|
Gödel | 1929/1930 | Deduction | PDL-I |
Completeness; Vollständigkeit. Recursively enumerable |
|
Gödel | 1931 | Gödel-numbering |
PDL-I, Arithmetic of Natural numbers First-order theory of natural numbers (Principia Mathematica) |
Einige formal unentscheidbare Satze: Incompleteness; Unvollständigkeit. Not recursively enumerable. |
|
Church | 1935/1936 |
Lambda-calculus (Lambda-definable): Recursive functions of positive integers |
PDL-I, Arithmetic of Natural numbers: Elementary number theory |
Unsolvable problem: UnDecidability; Unentscheidbarheit. |
|
Turing | 1936/1937 |
(Universal) Turing machine (Turing machine computability) |
PDL-I, Arithmetic: First order arithmetic |
UnDecidability; Unentscheidbarheit. |